Search results
Results from the WOW.Com Content Network
The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a ...
This result is known as the Shannon–Hartley theorem. [11] When the SNR is large (SNR ≫ 0 dB), the capacity ¯ is logarithmic in power and approximately linear in bandwidth. This is called the bandwidth-limited regime.
This relationship is described by the Shannon–Hartley theorem, which is a fundamental law of information theory. SNR can be calculated using different formulas depending on how the signal and noise are measured and defined.
Stated by Claude Shannon in 1948, the theorem describes the maximum possible efficiency of error-correcting methods versus levels of noise interference and data corruption. Shannon's theorem has wide-ranging applications in both communications and data storage. This theorem is of foundational importance to the modern field of information theory ...
The entropy of a message per bit multiplied by the length of that message is a measure of how much total information the message contains. Shannon's theorem also implies that no lossless compression scheme can shorten all messages. If some messages come out shorter, at least one must come out longer due to the pigeonhole principle. In practical ...
Shannon's main result, the noisy-channel coding theorem, showed that, in the limit of many channel uses, the rate of information that is asymptotically achievable is equal to the channel capacity, a quantity dependent merely on the statistics of the channel over which the messages are sent. [8]
Converse of Shannon's capacity theorem [ edit ] The converse of the capacity theorem essentially states that 1 − H ( p ) {\displaystyle 1-H(p)} is the best rate one can achieve over a binary symmetric channel.
In graph theory, the Shannon capacity of a graph is a graph invariant defined from the number of independent sets of strong graph products. It is named after American mathematician Claude Shannon . It measures the Shannon capacity of a communications channel defined from the graph, and is upper bounded by the Lovász number , which can be ...