Search results
Results from the WOW.Com Content Network
The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule , the notation is often sufficient and commonly used for spectroscopy .
In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following: C n (for cyclic) indicates that the group has an n-fold rotation axis. C nh is C n with the addition of a mirror (reflection) plane perpendicular to the axis of rotation.
The following table lists several notations for point groups: Hermann–Mauguin notation (used in crystallography), Schönflies notation (used to describe molecular symmetry), orbifold notation, and Coxeter notation. The latter three are not only conveniently related to its properties, but also to the order of the group.
In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups.
John Conway uses a variation of the Schoenflies notation, based on the groups' quaternion algebraic structure, labeled by one or two upper case letters, and whole number subscripts. The group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, "±", prefix, which implies a central inversion. [3]
The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line groups; 17 wallpaper groups – 2D space groups.
The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is one of two conventions commonly used to describe point groups. This notation is used in spectroscopy and is used here to specify a molecular point group.
Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx. Each element of a point group is either a rotation (determinant of M = 1), or it is a reflection or improper rotation (determinant of M = −1). The geometric symmetries of crystals are described by space groups, which ...