Search results
Results from the WOW.Com Content Network
Delta-sigma (ΔΣ; or sigma-delta, ΣΔ) modulation is an oversampling method for encoding signals into low bit depth digital signals at a very high sample-frequency as part of the process of delta-sigma analog-to-digital converters (ADCs) and digital-to-analog converters (DACs).
To achieve high signal-to-noise ratio, delta modulation must use oversampling techniques, that is, the analog signal is sampled at a rate several times higher than the Nyquist rate. Derived forms of delta modulation are continuously variable slope delta modulation, delta-sigma modulation, and differential modulation.
Categorization for signal modulation based on data and carrier types. In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal that typically contains information to be transmitted. [1]
Continuously variable slope delta modulation (CVSD or CVSDM) is a voice coding method. It is a delta modulation with variable step size (i.e., special case of adaptive delta modulation), first proposed by Greefkes and Riemens in 1970. CVSD encodes at 1 bit per sample, so that audio sampled at 16 kHz is encoded at 16 kbit/s.
Amplitude-shift keying (ASK) is a form of amplitude modulation that represents digital data as variations in the amplitude of a carrier wave. [1] In an ASK system, a symbol, representing one or more bits, is sent by transmitting a fixed-amplitude carrier wave at a fixed frequency for a specific time duration.
On the contrary, delta modulation and delta-sigma modulation are random processes [clarification needed] that produces a continuous spectrum without distinct harmonics. While intersective PWM uses a fixed period but a varying duty cycle, the period of delta and delta-sigma modulated PWMs varies in addition to their duty cycle.
δ is a reaction constant that describes the susceptibility of a reaction series to steric effects. For the definition reaction series δ was set to 1 and E s for the reference reaction was set to zero. This equation is combined with the equation for σ* to give the full Taft equation.
The delta RF signals are created by pairs of antenna feed-horns located adjacent to the sum feed-horn (sum feed-horn not shown in the figure). The output of each pair of delta feed-horns are added together, and this creates zero output signal when the incoming RF signal is located at the center of the antenna beam.