enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left.

  3. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    In binary encoding each long number is multiplied by one digit (either 0 or 1), and that is much easier than in decimal, as the product by 0 or 1 is just 0 or the same number. Therefore, the multiplication of two binary numbers comes down to calculating partial products (which are 0 or the first number), shifting them left, and then adding them ...

  4. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    With the addition of an OR gate to combine their carry outputs, two half adders can be combined to make a full adder. [2] The half adder adds two input bits and generates a carry and sum, which are the two outputs of a half adder. The input variables of a half adder are called the augend and addend bits. The output variables are the sum and carry.

  5. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    Add a full adder for weight 8, and pass the remaining wire through, outputs: 2 weight-8 wires, 1 weight-16 wire; Add a full adder for weight 16, outputs: 1 weight-16 wire, 1 weight-32 wire; Add a half adder for weight 32, outputs: 1 weight-32 wire, 1 weight-64 wire; Pass the only weight-64 wire through, output: 1 weight-64 wire; Wires at the ...

  6. Kogge–Stone adder - Wikipedia

    en.wikipedia.org/wiki/Kogge–Stone_adder

    An example of a 4-bit Kogge–Stone adder is shown in the diagram. Each vertical stage produces a "propagate" and a "generate" bit, as shown. The culminating generate bits (the carries) are produced in the last stage (vertically), and these bits are XOR'd with the initial propagate after the input (the red boxes) to produce the sum bits. E.g., the first (least-significant) sum bit is ...

  7. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  8. Carry-save adder - Wikipedia

    en.wikipedia.org/wiki/Carry-save_adder

    A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.

  9. Binary decision diagram - Wikipedia

    en.wikipedia.org/wiki/Binary_decision_diagram

    The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.