enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part ⁠ 1 / 2 ⁠. Many consider it to be the most important unsolved problem in pure mathematics . [ 1 ]

  3. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  4. Hilbert's eighth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_eighth_problem

    It asks for more work on the distribution of primes and generalizations of Riemann hypothesis to other rings where prime ideals take the place of primes. Absolute value of the ζ-function. Hilbert's eighth problem includes the Riemann hypothesis, which states that this function can only have non-trivial zeroes along the line x = 1/2 [2].

  5. Generalized Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Generalized_Riemann_hypothesis

    The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function.

  6. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    Riemann's statement of the Riemann hypothesis, from his 1859 paper. [11] (He was discussing a version of the zeta function, modified so that its roots are real rather than on the critical line. He was discussing a version of the zeta function, modified so that its roots are real rather than on the critical line.

  7. Riemann–von Mangoldt formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–von_Mangoldt_formula

    In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function. The formula states that the number N(T) of zeros of the zeta function with imaginary part greater than 0 and less than or equal to T satisfies

  8. Geometric function theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_function_theory

    A Riemann surface, first studied by and named after Bernhard Riemann, is a one-dimensional complex manifold. Riemann surfaces can be thought of as deformed versions of the complex plane : locally near every point they look like patches of the complex plane, but the global topology can be quite different.

  9. On the Number of Primes Less Than a Given Magnitude

    en.wikipedia.org/wiki/On_the_Number_of_Primes...

    The entire function ξ(s), related to the zeta function through the gamma function (or the Π function, in Riemann's usage) The discrete function J(x) defined for x ≥ 0, which is defined by J(0) = 0 and J(x) jumps by 1/n at each prime power p n. (Riemann calls this function f(x).) Among the proofs and sketches of proofs: