Search results
Results from the WOW.Com Content Network
Aluminium nitride (Al N) is a solid nitride of aluminium. It has a high thermal conductivity of up to 321 W/(m·K) [ 5 ] and is an electrical insulator. Its wurtzite phase (w-AlN) has a band gap of ~6 eV at room temperature and has a potential application in optoelectronics operating at deep ultraviolet frequencies.
The thermal grease 860 is a silicone oil with a Zinc Oxide filler and 8616 and 8617 are synthetic oils with various fillers including Aluminum Oxide and Boron Nitride. At 25 °C the densities are 2.40, 2.69 and 1.96 g/mL for the greases 860, 8616 and 8617 respectively.
Aluminium titanium nitride (AlTiN) coated endmills using cathodic arc deposition technique. Titanium aluminium nitride (TiAlN) or aluminium titanium nitride (AlTiN; for aluminium contents higher than 50%) is a group of metastable hard coatings consisting of nitrogen and the metallic elements aluminium and titanium.
Aluminium oxynitride (marketed under the name ALON by Surmet Corporation [3]) is a transparent ceramic composed of aluminium, oxygen and nitrogen. Aluminium oxynitride is optically transparent (≥80% for 2 mm thickness) in the near-ultraviolet , visible, and mid-wave- infrared regions of the electromagnetic spectrum.
There are a number of possible ways to measure thermal conductivity, each of them suitable for a limited range of materials, depending on the thermal properties and the medium temperature. Three classes of methods exist to measure the thermal conductivity of a sample: steady-state, time-domain, and frequency-domain methods.
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
Depending on the operating environment, they must be resistant to thermal shock, be chemically inert, and/or have specific ranges of thermal conductivity and of the coefficient of thermal expansion. The oxides of aluminium ( alumina ), silicon ( silica ) and magnesium ( magnesia ) are the most important materials used in the manufacturing of ...