enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/MillerRabin_primality_test

    The MillerRabin primality test or RabinMiller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...

  3. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see MillerRabin primality test for details.

  4. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    This leads to probabilistic algorithms such as the Solovay–Strassen primality test, the Baillie–PSW primality test, and the MillerRabin primality test, which produce what are known as industrial-grade primes. Industrial-grade primes are integers for which primality has not been "certified" (i.e. rigorously proven), but have undergone a ...

  5. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The MillerRabin and the Solovay–Strassen primality tests are simple and are much faster than other general primality tests. One method of improving efficiency further in some cases is the Frobenius pseudoprimality test ; a round of this test takes about three times as long as a round of MillerRabin, but achieves a probability bound ...

  6. Strong pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Strong_pseudoprime

    A strong pseudoprime is a composite number that passes the MillerRabin primality test. All prime numbers pass this test, but a small fraction of composites also pass, making them " pseudoprimes ". Unlike the Fermat pseudoprimes , for which there exist numbers that are pseudoprimes to all coprime bases (the Carmichael numbers ), there are no ...

  7. Talk:Primality test - Wikipedia

    en.wikipedia.org/wiki/Talk:Primality_test

    If you make, say, 25 iterations of the Miller-Rabin tests, the algorithm as such is correct with probability smaller than 10 −15. This is orders of magnitude less than the probability that the computation will be corrupted by hardware errors, software bugs, mistyping the input, some user's death due to heart attack during the computation, or ...

  8. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  9. Baillie–PSW primality test - Wikipedia

    en.wikipedia.org/wiki/Baillie–PSW_primality_test

    The BigInteger class in standard versions of Java and in open-source implementations like OpenJDK has a method called isProbablePrime. This method does one or more MillerRabin tests with random bases. If n, the number being tested, has 100 bits or more, this method also does a non-strong Lucas test that checks whether U n+1 is 0 (mod n).