enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radical of an integer - Wikipedia

    en.wikipedia.org/wiki/Radical_of_an_integer

    In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}

  3. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  4. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    An unresolved root, especially one using the radical symbol, is sometimes referred to as a surd [2] or a radical. [3] Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a radical expression , and if it contains no transcendental functions or transcendental numbers it is called an algebraic ...

  5. Algebraic operation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_operation

    Algebraic operations in the solution to the quadratic equation.The radical sign √, denoting a square root, is equivalent to exponentiation to the power of ⁠ 1 / 2 ⁠.The ± sign means the equation can be written with either a + or a – sign.

  6. Radical of an ideal - Wikipedia

    en.wikipedia.org/wiki/Radical_of_an_ideal

    Consider the ring of integers.. The radical of the ideal of integer multiples of is (the evens).; The radical of is .; The radical of is .; In general, the radical of is , where is the product of all distinct prime factors of , the largest square-free factor of (see Radical of an integer).

  7. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Moreover, if the polynomial degree is a power of 2 and the roots are all real, then if there is a root that can be expressed in real radicals it can be expressed in terms of square roots and no higher-degree roots, as can the other roots, and so the roots are classically constructible. Casus irreducibilis for quintic polynomials is discussed by ...

  8. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = ⁠ 1+ √ 5 / 2 ⁠ is the golden ratio. Then the only real solution x = −1.84208... is given by

  9. Radical of an algebraic group - Wikipedia

    en.wikipedia.org/wiki/Radical_of_an_algebraic_group

    An algebraic group is called semisimple if its radical is trivial, i.e., consists of the identity element only. The group ⁡ is semi-simple, for example. The subgroup of unipotent elements in the radical is called the unipotent radical, it serves to define reductive groups.