Search results
Results from the WOW.Com Content Network
In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}
In mathematics, an n th root of a number x is a number r (the root) which, when raised to the power of the positive integer n, yields x: = ⏟ =.. The integer n is called the index or degree, and the number x of which the root is taken is the radicand.
An algebraic group is called semisimple if its radical is trivial, i.e., consists of the identity element only. The group is semi-simple, for example. The subgroup of unipotent elements in the radical is called the unipotent radical, it serves to define reductive groups.
Consider the ring of integers.. The radical of the ideal of integer multiples of is (the evens).; The radical of is .; The radical of is .; In general, the radical of is , where is the product of all distinct prime factors of , the largest square-free factor of (see Radical of an integer).
The symbol was first seen in print without the vinculum (the horizontal "bar" over the numbers inside the radical symbol) in the year 1525 in Die Coss by Christoff Rudolff, a German mathematician. In 1637 Descartes was the first to unite the German radical sign √ with the vinculum to create the radical symbol in common use today. [3]
Every nonnegative real number x has a unique nonnegative square root, called the principal square root or simply the square root (with a definite article, see below), which is denoted by , where the symbol " " is called the radical sign [2] or radix. For example, to express the fact that the principal square root of 9 is 3, we write =.
If you've been having trouble with any of the connections or words in Saturday's puzzle, you're not alone and these hints should definitely help you out. Plus, I'll reveal the answers further down
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula