Search results
Results from the WOW.Com Content Network
For example, the principal branch has a branch cut along the negative real axis. If the function L ( z ) {\displaystyle \operatorname {L} (z)} is extended to be defined at a point of the branch cut, it will necessarily be discontinuous there; at best it will be continuous "on one side", like Log z {\displaystyle \operatorname {Log} z ...
The logarithm has a jump discontinuity of 2 π i when crossing the branch cut. The logarithm can be made continuous by gluing together countably many copies, called sheets, of the complex plane along the branch cut. On each sheet, the value of the log differs from its principal value by a multiple of 2 π i. These surfaces are glued to each ...
Any number log z defined by such criteria has the property that e log z = z. In this manner log function is a multi-valued function (often referred to as a "multifunction" in the context of complex analysis). A branch cut, usually along the negative real axis, can limit the imaginary part so it lies between −π and π. These are the chosen ...
Each value of k determines what is known as a branch (or sheet), a single-valued component of the multiple-valued log function. When the focus is on a single branch, sometimes a branch cut is used; in this case removing the non-positive real numbers from the domain of the function and eliminating π {\displaystyle \pi } as a possible value for ...
The n th partial sum can approximate ln(z) with arbitrary precision, provided the number of summands n is large enough. In elementary calculus, the series is said to converge to the function ln(z), and the function is the limit of the series. It is the Taylor series of the natural logarithm at z = 1.
However, the important thing to note is that z 1/2 = e (Log z)/2, so z 1/2 has a branch cut. This affects our choice of the contour C. Normally the logarithm branch cut is defined as the negative real axis, however, this makes the calculation of the integral slightly more complicated, so we define it to be the positive real axis.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at =, where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis ( 1 , ∞ ) {\displaystyle (1,\infty )} .