Search results
Results from the WOW.Com Content Network
Basic ways that neurons can interact with each other when converting input to output. Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs ...
The two ways that synaptic potentials can add up to potentially form an action potential are spatial summation and temporal summation. [5] Spatial summation refers to several excitatory stimuli from different synapses converging on the same postsynaptic neuron at the same time to reach the threshold needed to reach an action potential. Temporal ...
Fig. 1: Spatial and temporal summation.Two EPSPs innervated in rapid succession sum to produce a larger EPSP, or an action potential in the postsynaptic cell. Coincidence detection relies on separate inputs converging on a common target.
Temporal summation occurs when graded potentials within the postsynaptic cell occur so rapidly that they build on each other before the previous ones fade. Spatial summation occurs when postsynaptic potentials from adjacent synapses on the cell occur simultaneously and add together.
Temporal summation: When a single synapse inputs that are close together in time, their potentials are also added together. Thus, if a neuron receives an excitatory postsynaptic potential, and then the presynaptic neuron fires again, creating another EPSP, then the membrane of the postsynaptic cell is depolarized by the total sum of all the ...
Therefore, in order to achieve threshold and generate an action potential, the postsynaptic neuron has the capacity to add up all of the incoming EPSPs based on the mechanism of summation, which can occur in time and space. Temporal summation occurs when a particular synapse is stimulated at a high frequency, which causes the postsynaptic ...
The spectro-temporal receptive field or spatio-temporal receptive field (STRF) of a neuron represents which types of stimuli excite or inhibit that neuron. [1] " Spectro-temporal" refers most commonly to audition, where the neuron's response depends on frequency versus time, while "spatio-temporal" refers to vision, where the neuron's response depends on spatial location versus time.
According to temporal summation one would expect the inhibitory and excitatory currents to be summed linearly to describe the resulting current entering the cell. However, when inhibitory and excitatory currents are on the soma of the cell, the inhibitory current causes the cell resistance to change (making the cell "leakier"), thereby ...