enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  3. Augmented Lagrangian method - Wikipedia

    en.wikipedia.org/wiki/Augmented_Lagrangian_method

    Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.

  4. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    The data are also subject to errors, and the errors in are also assumed to be independent with zero mean and standard deviation . Under these assumptions the Tikhonov-regularized solution is the most probable solution given the data and the a priori distribution of x {\displaystyle x} , according to Bayes' theorem .

  5. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    In typed lambda calculus, functions can be applied only if they are capable of accepting the given input's "type" of data. Typed lambda calculi are strictly weaker than the untyped lambda calculus, which is the primary subject of this article, in the sense that typed lambda calculi can express less than the untyped calculus can. On the other ...

  6. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    In machine learning, a key challenge is enabling models to accurately predict outcomes on unseen data, not just on familiar training data. Regularization is crucial for addressing overfitting—where a model memorizes training data details but can't generalize to new data. The goal of regularization is to encourage models to learn the broader ...

  7. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    The Heckman correction is a statistical technique to correct bias from non-randomly selected samples or otherwise incidentally truncated dependent variables, a pervasive issue in quantitative social sciences when using observational data. [1]

  8. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    In this case particular lambda terms (which define functions) are considered as values. "Running" (beta reducing) the fixed-point combinator on the encoding gives a lambda term for the result which may then be interpreted as fixed-point value. Alternately, a function may be considered as a lambda term defined purely in lambda calculus.

  9. Identifiability - Wikipedia

    en.wikipedia.org/wiki/Identifiability

    A model that fails to be identifiable is said to be non-identifiable or unidentifiable: two or more parametrizations are observationally equivalent. In some cases, even though a model is non-identifiable, it is still possible to learn the true values of a certain subset of the model parameters.