Search results
Results from the WOW.Com Content Network
That is to say, by evaluating the Jacobian matrix at each of the equilibrium points of the system, and then finding the resulting eigenvalues, the equilibria can be categorized. Then the behavior of the system in the neighborhood of each equilibrium point can be qualitatively determined, (or even quantitatively determined, in some instances ...
When m = 1, that is when f : R n → R is a scalar-valued function, the Jacobian matrix reduces to the row vector; this row vector of all first-order partial derivatives of f is the transpose of the gradient of f, i.e. =.
It calculates a vector e which contains the eigenvalues and a matrix E which contains ... ; that is, the equilibrium point 0 is attractive to (). If ...
Equilibrant force. In mechanics, an equilibrant force is a force which brings a body into mechanical equilibrium. [1] According to Newton's second law, a body has zero acceleration when the vector sum of all the forces acting upon it is zero:
The value of these components will depend on the coordinate system chosen to represent the vector, but the magnitude of the vector is a physical quantity (a scalar) and is independent of the Cartesian coordinate system chosen to represent the vector (so long as it is normal). Similarly, every second rank tensor (such as the stress and the ...
Then, we calculated the stress vector by definition = = [,,], thus the X component of this vector is = (we use similar reasoning for stresses acting on the bottom and back walls, i.e.: ,). The second element requiring explanation is the approximation of the values of stress acting on the walls opposite the walls covering the axes.
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space. [1] A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane.
The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...