enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    A simple harmonic oscillator is an oscillator that is neither driven nor damped. It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k. Balance of forces (Newton's second law) for the system is.

  3. Coherent state - Wikipedia

    en.wikipedia.org/wiki/Coherent_state

    In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state that has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in ...

  4. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.

  5. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    Thus simple harmonic motion is a type of periodic motion. If energy is lost in the system, then the mass exhibits damped oscillation. Note if the real space and phase space plot are not co-linear, the phase space motion becomes elliptical. The area enclosed depends on the amplitude and the maximum momentum.

  6. Duffing equation - Wikipedia

    en.wikipedia.org/wiki/Duffing_equation

    β = 0 , {\displaystyle \beta =0,} the Duffing equation describes a damped and driven simple harmonic oscillator, γ {\displaystyle \gamma } is the amplitude of the periodic driving force; if. γ = 0 {\displaystyle \gamma =0} the system is without a driving force, and. ω {\displaystyle \omega } is the angular frequency of the periodic driving ...

  7. Creation and annihilation operators - Wikipedia

    en.wikipedia.org/wiki/Creation_and_annihilation...

    Creation and annihilation operators. Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. [1] An annihilation operator (usually denoted ) lowers the number of particles in a given state by one.

  8. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  9. Propagator - Wikipedia

    en.wikipedia.org/wiki/Propagator

    Quantum field theory. In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum ...