Search results
Results from the WOW.Com Content Network
The center of the symmetric group, S n, is trivial for n ≥ 3. The center of the alternating group, A n, is trivial for n ≥ 4. The center of the general linear group over a field F, GL n (F), is the collection of scalar matrices, { sI n ∣ s ∈ F \ {0} }. The center of the orthogonal group, O n (F) is {I n, −I n}.
The centre of a parabola is the contact point of the figurative straight. The centre of a hyperbola lies without the curve, since the figurative straight crosses the curve. The tangents from the centre to the hyperbola are called 'asymptotes'. Their contact points are the two points at infinity on the curve.
The center of a group G consists of all those elements x in G such that xg = gx for all g in G. This is a normal subgroup of G. The similarly named notion for a semigroup is defined likewise and it is a subsemigroup. [1] [2] The center of a ring (or an associative algebra) R is the subset of R consisting of all those elements x of R such that ...
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
Another less common notation for the centralizer is Z(a), which parallels the notation for the center. With this latter notation, one must be careful to avoid confusion between the center of a group G, Z(G), and the centralizer of an element g in G, Z(g). The normalizer of S in the group (or semigroup) G is defined as
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .
For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.