Search results
Results from the WOW.Com Content Network
The more general Ramanujan–Petersson conjecture for holomorphic cusp forms in the theory of elliptic modular forms for congruence subgroups has a similar formulation, with exponent (k − 1)/2 where k is the weight of the form. These results also follow from the Weil conjectures, except for the case k = 1, where it is a result of Deligne ...
Some forms of city directories provide this form of lookup for listed services by phone number, along with address cross-referencing. Publicly accessible reverse telephone directories may be provided as part of the standard directory services from the telecommunications carrier in some countries.
George Andrews [14] showed that several of Ramanujan's fifth order mock theta functions are equal to quotients Θ(𝜏) / θ(𝜏) where θ(𝜏) is a modular form of weight 1 / 2 and Θ(𝜏) is a theta function of an indefinite binary quadratic form, and Dean Hickerson [15] proved similar results for seventh order mock theta ...
Scammer phone number lookup: Another option to determine if a phone number calling you is likely scam activity is to search for it on Google. Several websites track scam numbers, and a quick ...
The site enables you to find more than just reverse lookup names; you can search for addresses, phone numbers and email addresses. BestPeopleFinder gets all its data from official public, state ...
In mathematics, a Ramanujan–Sato series [1] [2] generalizes Ramanujan’s pi formulas such as, = = ()!! + to the form = = + by using other well-defined sequences of integers obeying a certain recurrence relation, sequences which may be expressed in terms of binomial coefficients (), and ,, employing modular forms of higher levels.
The web of modularity: arithmetic of the coefficients of modular forms and q-series. CBMS Regional Conference Series in Mathematics. Vol. 102. Providence, RI: American Mathematical Society. ISBN 978-0-8218-3368-1. Zbl 1119.11026. Ramanujan, S. (1919). "Some properties of p(n), the number of partitions of n".
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web. AOL.