Search results
Results from the WOW.Com Content Network
Expressing resonance when drawing Lewis structures may be done either by drawing each of the possible resonance forms and placing double-headed arrows between them or by using dashed lines to represent the partial bonds (although the latter is a good representation of the resonance hybrid which is not, formally speaking, a Lewis structure).
In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula O − 2. [1] The systematic name of the anion is dioxide(1−).The reactive oxygen ion superoxide is particularly important as the product of the one-electron reduction of dioxygen O 2, which occurs widely in nature. [2]
Oxygen is a chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and a potent oxidizing agent that readily forms oxides with most elements as well as with other compounds.
Its lowest-energy electronic state is a spin triplet, designated by the term symbol 3 P. On Earth's surface, it exists naturally for a very short time. In outer space, the presence of ample ultraviolet radiation results in a low Earth orbit atmosphere in which 96% of the oxygen occurs in atomic form. [1]
A key step is drawing the Lewis structure of the molecule (neutral, cationic, anionic): Atom symbols are arranged so that pairs of atoms can be joined by single two-electron bonds as in the molecule (a sort of "skeletal" structure), and the remaining valence electrons are distributed such that sp atoms obtain an octet (duet for hydrogen) with a ...
The unit cell of rutile, an important oxide of titanium.Ti(IV) centers are grey; oxygen centers are red. Notice that oxygen forms three bonds to titanium and titanium forms six bonds to oxygen.
Molecular orbital theory predicts the electronic ground state denoted by the molecular term symbol 3 Σ – g, and two low-lying excited singlet states with term symbols 1 Δ g and 1 Σ + g. These three electronic states differ only in the spin and the occupancy of oxygen's two antibonding π g-orbitals, which are degenerate (equal in energy).
It is named after Warren K. Lewis (1882–1975), [6] [7] who was the first head of the Chemical Engineering Department at MIT. Some workers in the field of combustion assume (incorrectly) that the Lewis number was named for Bernard Lewis (1899–1993), who for many years was a major figure in the field of combustion research. [citation needed]