enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    The oldest definition of the cardinality of a set X (implicit in Cantor and explicit in Frege and Principia Mathematica) is as the set of all sets that are equinumerous with X: this does not work in ZFC or other related systems of axiomatic set theory because this collection is too large to be a set, but it does work in type theory and in New ...

  3. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class. The most common choice is the initial ordinal in that class. This is usually taken as the definition of cardinal number in axiomatic set theory.

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  5. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null , the smallest infinite cardinal In mathematics , a cardinal number , or cardinal for short, is what is commonly called the number of elements of a set .

  6. König's theorem (set theory) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(set_theory)

    In set theory, KÅ‘nig's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and < for every i in I, then <. The sum here is the cardinality of the disjoint union of the sets m i, and the product is the cardinality of the Cartesian product.

  7. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  8. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    Besides the cardinality, which describes the size of a set, ordered sets also form a subject of set theory. The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order.

  9. Set-theoretic topology - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_topology

    The topologies of both spaces have cardinality . These are examples of cardinal functions, a topic in set-theoretic topology. In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).