Search results
Results from the WOW.Com Content Network
In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
The algorithm only reports the longest in-order run of text between two documents. Text moved out of the longest run of similarities is missed. Heuristics are not used. Any similarity between the two documents above the specified minimum will be reported (if detecting moves is selected). This is the main difference between Diff-Text and most ...
For example, the strings "Sam" and "Samuel" can be considered to be close. [1] A string metric provides a number indicating an algorithm-specific indication of distance. The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [ 2 ]
In computing, the utility diff is a data comparison tool that computes and displays the differences between the contents of files. Unlike edit distance notions used for other purposes, diff is line-oriented rather than character-oriented, but it is like Levenshtein distance in that it tries to determine the smallest set of deletions and insertions to create one file from the other.
The most efficient method of finding differences depends on the source data, and the nature of the changes. One approach is to find the longest common subsequence between two files, then regard the non-common data as an insertion, or a deletion. In 1978, Paul Heckel published an algorithm that identifies most moved blocks of text. [2]
For example, when comparing two ontologies describing conferences, the entities "Contribution" and "Paper" may have high semantic similarity since they share the same meaning. Nonetheless, due to their lexical differences, lexicographical similarity alone cannot establish this alignment.
In text processing, a proximity search looks for documents where two or more separately matching term occurrences are within a specified distance, where distance is the number of intermediate words or characters. In addition to proximity, some implementations may also impose a constraint on the word order, in that the order in the searched text ...
In discussing just one text we are discussing every text. No distinction is necessarily made between texts in this "basic" level. The difference/deferral can be between one text and itself, or between two texts; this is the crucial distinction between traditional perspectives and deconstruction.