Search results
Results from the WOW.Com Content Network
The head loss Δh (or h f) expresses the pressure loss due to friction in terms of the equivalent height of a column of the working fluid, so the pressure drop is =, where: Δh = The head loss due to pipe friction over the given length of pipe (SI units: m); [b]
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
The Hardy Cross method is an application of continuity of flow and continuity of potential to iteratively solve for flows in a pipe network. [1] In the case of pipe flow, conservation of flow means that the flow in is equal to the flow out at each junction in the pipe.
If more than one formula is applicable in the flow regime under consideration, the choice of formula may be influenced by one or more of the following: Required accuracy; Speed of computation required; Available computational technology: calculator (minimize keystrokes) spreadsheet (single-cell formula) programming/scripting language (subroutine).
After both minor losses and friction losses have been calculated, these values can be summed to find the total head loss. Equation for total head loss, , can be simplified and rewritten as: = [() + (,)] [5] = Frictional head loss = Downstream velocity = Gravity of Earth
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid. TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The friction loss is customarily given as pressure loss for a given duct length, Δp / L, in units of (US) inches of water for 100 feet or (SI) kg / m 2 / s 2. For specific choices of duct material, and assuming air at standard temperature and pressure (STP), standard charts can be used to calculate the expected friction loss.