Search results
Results from the WOW.Com Content Network
Wind-wave dissipation or "swell dissipation" is process in which a wave generated via a weather system loses its mechanical energy transferred from the atmosphere via wind. Wind waves, as their name suggests, are generated by wind transferring energy from the atmosphere to the ocean's surface, capillary gravity waves play an essential role in ...
More generally, a swell consists of wind-generated waves that are not greatly affected by the local wind at that time. Swell waves often have a relatively long wavelength, as short wavelength waves carry less energy and dissipate faster, but this varies due to the size, strength, and duration of the weather system responsible for the swell and ...
The transfer of energy between the wind blowing over the surface of an ocean and the ocean's upper layer is an important element in wave dynamics. [27] The spectral wave transport equation is used to describe the change in wave spectrum over changing topography.
Swell height is the height of the swell in deep water. [1] Swell direction is the direction from which the swell is coming. It is measured in degrees (as on a compass), and often referred to in general directions, such as a NNW or SW swell. [1] Swell period is an important factor in surf forecasting. It is a measurement of time between ...
The energy transferred from the wind to the sea produces wind waves. The waves that are created when the energy travels down away from the source area (like ripples) are known as swell. When the winds are strong at the source area, the swell is larger. The longer the wind blows, the longer the swell lasts.
Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC). Waves are generated primarily by wind passing over the sea's surface and also by tidal forces, temperature variations, and other factors.
Wind blowing over the surface generates tiny wavelets. These wavelets develop over time and become ocean surface waves by absorbing the energy transferred from the wind. The Miles-Phillips mechanism is a physical interpretation of these wind-generated surface waves.
In fluid dynamics, wind wave modeling describes the effort to depict the sea state and predict the evolution of the energy of wind waves using numerical techniques.These simulations consider atmospheric wind forcing, nonlinear wave interactions, and frictional dissipation, and they output statistics describing wave heights, periods, and propagation directions for regional seas or global oceans.