Search results
Results from the WOW.Com Content Network
Walsh diagrams in conjunction with molecular orbital theory can also be used as a tool to predict reactivity. By generating a Walsh Diagram and then determining the HOMO/LUMO of that molecule, it can be determined how the molecule is likely to react. In the following example, the Lewis acidity of AH 3 molecules such as BH 3 and CH 3 + is predicted.
Unlike the other group 2 metals, beryllium does not react with hydrogen. [3] Instead, BeH 2 is prepared from preformed beryllium(II) compounds. It was first synthesized in 1951 by treating dimethylberyllium, Be(CH 3) 2, with lithium aluminium hydride, LiAlH 4. [4] Purer BeH 2 forms from the pyrolysis of di-tert-butylberyllium, Be(C[CH 3] 3) 2 ...
MO diagrams with energy values can be obtained mathematically using the Hartree–Fock method. The starting point for any MO diagram is a predefined molecular geometry for the molecule in question. An exact relationship between geometry and orbital energies is given in Walsh diagrams.
The simple MO diagram of H 2 O is shown on the right. [2] [3] Following simple symmetry treatments, the 1s orbitals of hydrogen atom are premixed as a 1 and b 1. Orbitals of same symmetry and similar energy levels can then be mixed to form a new set of molecular orbitals with bonding, nonbonding, and antibonding characteristics. In the simple ...
[1]: 410–417 In VSEPR theory, a double bond or triple bond is treated as a single bonding group. [1] The sum of the number of atoms bonded to a central atom and the number of lone pairs formed by its nonbonding valence electrons is known as the central atom's steric number.
The molecular orbitals of electron withdrawing groups at C7 overlap with the HOMO Walsh orbitals of the cyclopropane ring causing a shortening of the C1-C6 bond. In the case of electron donating groups, orbital overlap is again possible now in the LUMO, resulting in an increase in antibonding character destabilizing the norcaradiene tautomer.
Case 2: the single atom is the nitrogen atom in the diazenyl group (N=N), which ends up as dinitrogen (N≡N). The above are known as cheletropic eliminations because a small, stable molecule is given off in the reaction. [1] Case 3 & 4: the single atom is the sulfur in sulfur dioxide (SO 2), which joins the alkene chains to form a ring.
A related reaction, involving initial attack at the silicon center, causes migration of one of the silicon groups to the carbonyl carbon, which initiates a Brook-Rearrangement. If the silicon group was chiral, the end product is a chiral silyl ether, as the migration occurs stereospecifically.