Search results
Results from the WOW.Com Content Network
As an example, a bag of 100 real-world dice is a random probability mass function (random pmf)—to sample this random pmf you put your hand in the bag and draw out a die, that is, you draw a pmf. A bag of dice manufactured using a crude process 100 years ago will likely have probabilities that deviate wildly from the uniform pmf, whereas a bag ...
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
The 'discrete case' given above is the special case arising when X takes on only countably many values and μ is a probability measure. In fact, the discrete case (although without the restriction to probability measures) is the first step in proving the general measure-theoretic formulation, as the general version follows therefrom by an ...
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
For example, with K = 3, the support is an equilateral triangle embedded in a downward-angle fashion in three-dimensional space, with vertices at (1,0,0), (0,1,0) and (0,0,1), i.e. touching each of the coordinate axes at a point 1 unit away from the origin.
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.
This leads directly to the probability mass function of a Log(p)-distributed random variable: = for k ≥ 1, and where 0 < p < 1. Because of the identity above, the distribution is properly normalized. The cumulative distribution function is