Search results
Results from the WOW.Com Content Network
The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.
The three eigenvectors are ordered ,, by their eigenvalues ; [50] then is the primary orientation/dip of clast, is the secondary and is the tertiary, in terms of strength. The clast orientation is defined as the direction of the eigenvector, on a compass rose of 360° .
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
The determinant of the matrix equals the product of its eigenvalues. Similarly, the trace of the matrix equals the sum of its eigenvalues. [4] [5] [6] From this point of view, we can define the pseudo-determinant for a singular matrix to be the product of its nonzero eigenvalues (the density of multivariate normal distribution will need this ...
The surviving diagonal elements, ,, are known as eigenvalues and designated with in the defining equation, which reduces to =. The resulting equation is known as eigenvalue equation . [ 5 ] The eigenvectors and eigenvalues are derived from it via the characteristic polynomial .
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.