enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    In a field, every nonzero element is invertible under multiplication; as above, division poses problems only when attempting to divide by zero. This is likewise true in a skew field (which for this reason is called a division ring). However, in other rings, division by nonzero elements may also pose problems.

  3. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    In terms of partition, 20 / 5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4, or ⁠ 20 / 5 ⁠ = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is ...

  4. Parity of zero - Wikipedia

    en.wikipedia.org/wiki/Parity_of_zero

    For any nonzero integer n, one may define the 2-adic order of n to be the number of times n is divisible by 2. This description does not work for 0; no matter how many times it is divided by 2, it can always be divided by 2 again. Rather, the usual convention is to set the 2-order of 0 to be infinity as a special case. [30]

  5. Division algebra - Wikipedia

    en.wikipedia.org/wiki/Division_algebra

    A finite-dimensional unital associative algebra (over any field) is a division algebra if and only if it has no nonzero zero divisors. Whenever A is an associative unital algebra over the field F and S is a simple module over A , then the endomorphism ring of S is a division algebra over F ; every associative division algebra over F arises in ...

  6. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    A nonzero integer with at least one non-trivial divisor is known as a composite number, while the units −1 and 1 and prime numbers have no non-trivial divisors. There are divisibility rules that allow one to recognize certain divisors of a number from the number's digits.

  7. Division ring - Wikipedia

    en.wikipedia.org/wiki/Division_ring

    In algebra, a division ring, also called a skew field (or, occasionally, a sfield [1] [2]), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring [3] in which every nonzero element a has a multiplicative inverse, that is, an element usually denoted a –1, such that a a –1 = a –1 a = 1.

  8. Zero divisor - Wikipedia

    en.wikipedia.org/wiki/Zero_divisor

    The ring of integers modulo a prime number has no nonzero zero divisors. Since every nonzero element is a unit, this ring is a finite field. More generally, a division ring has no nonzero zero divisors. A non-zero commutative ring whose only zero divisor is 0 is called an integral domain.

  9. Noncommutative ring - Wikipedia

    en.wikipedia.org/wiki/Noncommutative_ring

    Specifically, it is a nonzero ring [2] in which every nonzero element a has a multiplicative inverse, i.e., an element x with a · x = x · a = 1. Stated differently, a ring is a division ring if and only if its group of units is the set of all nonzero elements. Division rings differ from fields only in that their multiplication is not required ...