enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to ... Visible universe, if its density is the ...

  3. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    In the Schwarzschild coordinates, the Schwarzschild radius = is the radial coordinate of the event horizon = =. In the Kruskal–Szekeres coordinates the event horizon is given by =. Note that the metric is perfectly well defined and non-singular at the event horizon.

  4. Black hole cosmology - Wikipedia

    en.wikipedia.org/wiki/Black_hole_cosmology

    Any such model requires that the Hubble radius of the observable universe be equal to its Schwarzschild radius, that is, the product of its mass and the Schwarzschild proportionality constant. This is indeed known to be nearly the case; at least one cosmologist, however, considers this close match to be a coincidence. [3]

  5. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon, which is situated at the Schwarzschild radius (), often called the radius of a black hole. The boundary is not a physical surface, and a person who fell through the event horizon (before being torn apart by tidal forces) would not notice ...

  6. Karl Schwarzschild - Wikipedia

    en.wikipedia.org/wiki/Karl_Schwarzschild

    Karl Schwarzschild (German: [kaʁl ˈʃvaʁtsʃɪlt] ⓘ; 9 October 1873 – 11 May 1916) was a German physicist and astronomer.. Schwarzschild provided the first exact solution to the Einstein field equations of general relativity, for the limited case of a single spherical non-rotating mass, which he accomplished in 1915, the same year that Einstein first introduced general relativity.

  7. Messier 87 - Wikipedia

    en.wikipedia.org/wiki/Messier_87

    The Schwarzschild radius of the black hole is 120 AU (18 billion kilometres; 11 billion miles). [78] The diameter of the ring of emission, as seen from Earth, is 42 μas (microarcsecond). By comparison, the diameter of the core of M87 is 45" (as, arcsecond), and the size of M87 is 7.2' x 6.8' (am, arcminute).

  8. Event horizon - Wikipedia

    en.wikipedia.org/wiki/Event_horizon

    The Schwarzschild radius of an object is proportional to its mass. Theoretically, any amount of matter will become a black hole if compressed into a space that fits within its corresponding Schwarzschild radius. For the mass of the Sun, this radius is approximately 3 kilometers (1.9 miles); for Earth, it is

  9. Rotating black hole - Wikipedia

    en.wikipedia.org/wiki/Rotating_black_hole

    A rotating black hole is a black hole that possesses angular momentum.In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars (), galaxies, black holes – spin.