enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.

  3. Direct sum of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_groups

    The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...

  4. Universal property - Wikipedia

    en.wikipedia.org/wiki/Universal_property

    Therefore, one strategy to prove that two objects are isomorphic is to show that they satisfy the same universal property. Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U ...

  5. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    Use of direct sum terminology and notation is especially problematic when dealing with infinite families of rings: If () is an infinite collection of nontrivial rings, then the direct sum of the underlying additive groups can be equipped with termwise multiplication, but this produces a rng, that is, a ring without a multiplicative identity.

  6. Pushout (category theory) - Wikipedia

    en.wikipedia.org/wiki/Pushout_(category_theory)

    The pushout of these maps is the direct sum of A and B. Generalizing to the case where f and g are arbitrary homomorphisms from a common domain Z, one obtains for the pushout a quotient group of the direct sum; namely, we mod out by the subgroup consisting of pairs (f(z), −g(z)). Thus we have "glued" along the images of Z under f and g.

  7. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    Universal property of the product Whether a product exists may depend on C {\displaystyle C} or on X 1 {\displaystyle X_{1}} and X 2 . {\displaystyle X_{2}.} If it does exist, it is unique up to canonical isomorphism , because of the universal property, so one may speak of the product.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Projective module - Wikipedia

    en.wikipedia.org/wiki/Projective_module

    M is a direct sum of countably generated modules, M satisfies a certain Mittag-Leffler -type condition. This characterization can be used to show that if R → S {\displaystyle R\to S} is a faithfully flat map of commutative rings and M {\displaystyle M} is an R {\displaystyle R} -module, then M {\displaystyle M} is projective if and only if M ...