enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  3. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  4. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    LeNet-4 was a larger version of LeNet-1 designed to fit the larger MNIST database. It had more feature maps in its convolutional layers, and had an additional layer of hidden units, fully connected to both the last convolutional layer and to the output units. It has 2 convolutions, 2 average poolings, and 2 fully connected layers.

  5. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    The first layer in this block is a 1x1 convolution for dimension reduction (e.g., to 1/2 of the input dimension); the second layer performs a 3x3 convolution; the last layer is another 1x1 convolution for dimension restoration. The models of ResNet-50, ResNet-101, and ResNet-152 are all based on bottleneck blocks. [1]

  6. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    As an example, a single 5×5 convolution can be factored into 3×3 stacked on top of another 3×3. Both has a receptive field of size 5×5. The 5×5 convolution kernel has 25 parameters, compared to just 18 in the factorized version. Thus, the 5×5 convolution is strictly more powerful than the factorized version.

  7. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    The Recurrent layer is used for text processing with a memory function. Similar to the Convolutional layer, the output of recurrent layers are usually fed into a fully-connected layer for further processing. See also: RNN model. [6] [7] [8] The Normalization layer adjusts the output data from previous layers to achieve a regular distribution ...

  8. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Given an image (or an image-like feature map), selective search (also called Hierarchical Grouping) first segments the image by the algorithm in (Felzenszwalb and Huttenlocher, 2004), [13] then performs the following: [2]

  9. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution and related operations are found in many applications in science, engineering and mathematics. Convolutional neural networks apply multiple cascaded convolution kernels with applications in machine vision and artificial intelligence. [36] [37] Though these are actually cross-correlations rather than convolutions in most cases. [38]