Search results
Results from the WOW.Com Content Network
In statistics, Dixon's Q test, or simply the Q test, is used for identification and rejection of outliers.This assumes normal distribution and per Robert Dean and Wilfrid Dixon, and others, this test should be used sparingly and never more than once in a data set.
[2] Grubbs's test detects one outlier at a time. This outlier is expunged from the dataset and the test is iterated until no outliers are detected. However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3]
In data analysis, anomaly detection (also referred to as outlier detection and sometimes as novelty detection) is generally understood to be the identification of rare items, events or observations which deviate significantly from the majority of the data and do not conform to a well defined notion of normal behavior. [1]
The usual estimate of σ 2 is the internally studentized residual ^ = = ^. where m is the number of parameters in the model (2 in our example).. But if the i th case is suspected of being improbably large, then it would also not be normally distributed.
In general, if the nature of the population distribution is known a priori, it is possible to test if the number of outliers deviate significantly from what can be expected: for a given cutoff (so samples fall beyond the cutoff with probability p) of a given distribution, the number of outliers will follow a binomial distribution with parameter ...
With more points, random deviations from a line will be less pronounced. Normal plots are often used with as few as 7 points, e.g., with plotting the effects in a saturated model from a 2-level fractional factorial experiment. With fewer points, it becomes harder to distinguish between random variability and a substantive deviation from normality.
Suppose that we model our data as = + + +. If we split our data into two groups, then we have = + + + and = + + +. The null hypothesis of the Chow test asserts that =, =, and =, and there is the assumption that the model errors are independent and identically distributed from a normal distribution with unknown variance.
The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).