Search results
Results from the WOW.Com Content Network
computes natural logarithm (to base e) of 1 plus the given number ilogb: extracts exponent of the number logb: extracts exponent of the number Power functions sqrt: computes square root: cbrt: computes cubic root: hypot: computes square root of the sum of the squares of two given numbers: pow: raises a number to the given power [4 ...
The cube function is the function x ↦ x 3 (often denoted y = x 3) that maps a number to its cube. It is an odd function, as (−n) 3 = −(n 3). The volume of a geometric cube is the cube of its side length, giving rise to the name. The inverse operation that consists of finding a number whose cube is n is called extracting the cube root of n ...
An important application is Newton–Raphson division, which can be used to quickly find the reciprocal of a number a, using only multiplication and subtraction, that is to say the number x such that 1 / x = a. We can rephrase that as finding the zero of f(x) = 1 / x − a. We have f ′ (x) = − 1 / x 2 . Newton's ...
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Cubesort's algorithm uses a specialized binary search on each axis to find the location to insert an element. When an axis grows too large it is split. When an axis grows too large it is split. Locality of reference is optimal as only four binary searches are performed on small arrays for each insertion.
In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n.. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.
Since the sign of the discriminant of a number field K is (−1) r 2, where r 2 is the number of conjugate pairs of complex embeddings of K into C, the discriminant of a cubic field will be positive precisely when the field is totally real, and negative if it is a complex cubic field.
Here is an angle in the unit circle; taking 1 / 3 of that angle corresponds to taking a cube root of a complex number; adding −k 2 π / 3 for k = 1, 2 finds the other cube roots; and multiplying the cosines of these resulting angles by corrects for scale.