Search results
Results from the WOW.Com Content Network
If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recursion (or tail-end recursion) is particularly useful, and is often easy to optimize in implementations. Tail calls can be implemented without adding a new stack frame to the call stack.
Every call in CPS is a tail call, and the continuation is explicitly passed. Using CPS without tail call optimization (TCO) will cause not only the constructed continuation to potentially grow during recursion, but also the call stack. This is usually undesirable, but has been used in interesting ways—see the Chicken Scheme compiler. As CPS ...
As one of the examples used to demonstrate such reasoning, Manna's book includes a tail-recursive algorithm equivalent to the nested-recursive 91 function. Many of the papers that report an "automated verification" (or termination proof ) of the 91 function only handle the tail-recursive version.
The significance of tail recursion is that when making a tail-recursive call (or any tail call), the caller's return position need not be saved on the call stack; when the recursive call returns, it will branch directly on the previously saved return position. Therefore, in languages that recognize this property of tail calls, tail recursion ...
The Scheme language standard requires implementations to support proper tail recursion, meaning they must allow an unbounded number of active tail calls. [60] [61] Proper tail recursion is not simply an optimization; it is a language feature that assures users that they can use recursion to express a loop and doing so would be safe-for-space. [62]
State machines within a single subroutine, where the state is determined by the current entry/exit point of the procedure; this can result in more readable code compared to use of goto, and may also be implemented via mutual recursion with tail calls. Actor model of concurrency, for instance in video games.
A simple tail recursive parser can be written much like a recursive descent parser. The typical algorithm for parsing a grammar like this using an abstract syntax tree is: Parse the next level of the grammar and get its output tree, designate it the first tree, F; While there is terminating token, T, that can be put as the parent of this node:
This strategy avoids the overhead of recursive calls that do little or no work and may also allow the use of specialized non-recursive algorithms that, for those base cases, are more efficient than explicit recursion. A general procedure for a simple hybrid recursive algorithm is short-circuiting the base case, also known as arm's-length ...