Search results
Results from the WOW.Com Content Network
Material input per unit of service (MIPS) is an economic concept, originally developed at the Wuppertal Institute, Germany in the 1990s. The MIPS concept can be used to measure eco-efficiency of a product or service and applied in all scales from a single product to complex systems.
[11] [failed verification] When MIPS II was introduced, MIPS was renamed MIPS I to distinguish it from the new version. [3]: 32 MIPS Computer Systems' R6000 microprocessor (1989) was the first MIPS II implementation. [3]: 8 Designed for servers, the R6000 was fabricated and sold by Bipolar Integrated Technology, but was a commercial failure.
In the early 1990s, MIPS began to license their designs to third-party vendors. This proved fairly successful due to the simplicity of the core, which allowed it to have many uses that would have formerly used much less able complex instruction set computer (CISC) designs of similar gate count and price; the two are strongly related: the price of a CPU is generally related to the number of ...
MIPS was a fabless semiconductor company, so the R3000 was fabricated by MIPS partners including Integrated Device Technology (IDT), LSI Logic, NEC Corporation, Performance Semiconductor, and others. It was fabricated in a 1.2 μm complementary metal–oxide–semiconductor (CMOS) process [ 1 ] with two levels of aluminium interconnect .
The term is commonly used in association with a metric prefix (k, M, G, T, P, or E) to form kilo instructions per second (kIPS), mega instructions per second (MIPS), giga instructions per second (GIPS) and so on.
AMD was the first to introduce the instructions that now form Intel's BMI1 as part of its ABM (Advanced Bit Manipulation) instruction set, then later added support for Intel's new BMI2 instructions. AMD today advertises the availability of these features via Intel's BMI1 and BMI2 cpuflags and instructs programmers to target them accordingly.
The MIPS approach emphasized an aggressive clock cycle and the use of the pipeline, making sure it could be run as "full" as possible. [25] The MIPS system was followed by the MIPS-X and in 1984 Hennessy and his colleagues formed MIPS Computer Systems to produce the design commercially.
MIPS, an acronym for Microprocessor without Interlocked Pipeline Stages, was a research project conducted by John L. Hennessy at Stanford University between 1981 and 1984. . MIPS investigated a type of instruction set architecture (ISA) now called reduced instruction set computer (RISC), its implementation as a microprocessor with very large scale integration (VLSI) semiconductor technology ...