Search results
Results from the WOW.Com Content Network
Real ocean waves are composed of an infinite number of wave trains of all directions and frequencies, giving a broad range of acoustic waves. In practice, the transmission from the ocean to the atmosphere is strongest for angles around 0.5 degrees from the horizontal. For near-vertical propagation, the water depth may play an amplifying role as ...
The Sea Train is the name given to a sound recorded on March 5, 1997, on the Equatorial Pacific Ocean autonomous hydrophone array. The sound rises to a quasi-steady frequency. According to the NOAA, the origin of the sound is most likely generated by a very large iceberg grounded in the Ross Sea, near Cape Adare. [10
Away from resonance this can reduce tidal energy moving onto the shelf. However near a resonant frequency the phase relationship, between the waves on the shelf and in the deep ocean, can have the effect of drawing energy onto the shelf. The increased speed of long waves in the deep ocean means that the tidal wavelength there is of order 10,000 km.
The study of such sound waves is sometimes referred to as infrasonics, covering sounds beneath 20 Hz down to 0.1 Hz (and rarely to 0.001 Hz). People use this frequency range for monitoring earthquakes and volcanoes, charting rock and petroleum formations below the earth, and also in ballistocardiography and seismocardiography to study the ...
A hydrophone can also detect airborne sounds but is insensitive of them because it is designed to match the acoustic impedance of water, a denser fluid than air. Sound travels 4.3 times faster in water than in air, and a sound wave in water exerts a pressure 60 times more than what is exerted by a wave of the same amplitude in air.
The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.
Figure 2. Eigenvalue ε of wave modes of zonal wave number s = 1 vs. normalized frequency ν = ω/Ω where Ω = 7.27 × 10 −5 s −1 is the angular frequency of one solar day. Waves with positive (negative) frequencies propagate to the east (west). The horizontal dashed line is at ε c ≃ 11 and indicates the transition from internal to ...
The elephant could localize sounds best at a frequency below 1 kHz, with perfect identification of the left or right speaker at angles of 20 degrees or more, and chance level discriminations below 2 degrees. [10] Sound localization ability was measured to be best at 125 Hz and 250 Hz, intermediate at 500 Hz, 1 kHz, and 2 kHz, and very poor at ...