enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Every power of one equals: 1 n = 1 ... Power functions for n = 1, 3, 5 Power functions for n = 2, 4, 6. ... exponentiation to a real power of a negative real number ...

  3. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.

  4. Fifth power (algebra) - Wikipedia

    en.wikipedia.org/wiki/Fifth_power_(algebra)

    In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    For n equal to 2 this is called the principal square root and the n is omitted. The nth root can also be represented using exponentiation as x 1/n. For even values of n, positive numbers also have a negative nth root, while negative numbers do not have a real nth root.

  6. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    Visualisation of powers of 10 from one to 1 trillion. In mathematics, a power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ...

  7. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    This equation forces two of the three numbers x, y, and z to be equivalent modulo 5, which can be seen as follows: Since they are indivisible by 5, x, y and z cannot equal 0 modulo 5, and must equal one of four possibilities: 1, −1, 2, or −2. If they were all different, two would be opposites and their sum modulo 5 would be zero (implying ...

  8. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    The ErdÅ‘s–Moser equation, + + + = (+) where m and k are positive integers, is conjectured to have no solutions other than 1 1 + 2 1 = 3 1. The sums of three cubes cannot equal 4 or 5 modulo 9, but it is unknown whether all remaining integers can be expressed in this form.

  9. Negative number - Wikipedia

    en.wikipedia.org/wiki/Negative_number

    This thermometer is indicating a negative Fahrenheit temperature (−4 °F). In mathematics, a negative number is the opposite (mathematics) of a positive real number. [1] Equivalently, a negative number is a real number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency.