enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    The validity of this method can be verified from the usual principle of mathematical induction. Using mathematical induction on the statement P ( n ) defined as " Q ( m ) is false for all natural numbers m less than or equal to n ", it follows that P ( n ) holds for all n , which means that Q ( n ) is false for every natural number n .

  3. Structural induction - Wikipedia

    en.wikipedia.org/wiki/Structural_induction

    Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .

  4. Peano axioms - Wikipedia

    en.wikipedia.org/wiki/Peano_axioms

    The ninth, final, axiom is a second-order statement of the principle of mathematical induction over the natural numbers, which makes this formulation close to second-order arithmetic. A weaker first-order system is obtained by explicitly adding the addition and multiplication operation symbols and replacing the second-order induction axiom with ...

  5. Induction, bounding and least number principles - Wikipedia

    en.wikipedia.org/wiki/Induction,_bounding_and...

    The induction, bounding and least number principles are commonly used in reverse mathematics and second-order arithmetic. For example, I Σ 1 {\displaystyle {\mathsf {I}}\Sigma _{1}} is part of the definition of the subsystem R C A 0 {\displaystyle {\mathsf {RCA}}_{0}} of second-order arithmetic.

  6. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    By the principle of mathematical induction it follows that the result is true for all natural numbers. Now, S(0) is clearly true since cos(0 x ) + i sin(0 x ) = 1 + 0 i = 1 . Finally, for the negative integer cases, we consider an exponent of − n for natural n .

  7. Epsilon-induction - Wikipedia

    en.wikipedia.org/wiki/Epsilon-induction

    In set theory, -induction, also called epsilon-induction or set-induction, is a principle that can be used to prove that all sets satisfy a given property. Considered as an axiomatic principle, it is called the axiom schema of set induction. The principle implies transfinite induction and recursion.

  8. Transfinite induction - Wikipedia

    en.wikipedia.org/wiki/Transfinite_induction

    Transfinite induction requires proving a base case (used for 0), a successor case (used for those ordinals which have a predecessor), and a limit case (used for ordinals which don't have a predecessor). Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers.

  9. Recursive definition - Wikipedia

    en.wikipedia.org/wiki/Recursive_definition

    For example, the definition of the natural numbers presented here directly implies the principle of mathematical induction for natural numbers: if a property holds of the natural number 0 (or 1), and the property holds of n + 1 whenever it holds of n, then the property holds of all natural numbers (Aczel 1977:742).