Search results
Results from the WOW.Com Content Network
A strip of eight PCR tubes, each containing a 100 μL reaction mixture Placing a strip of eight PCR tubes into a thermal cycler. The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA (or a part of it) sufficiently to enable detailed study.
Unlike conventional PCR, this method avoids the previous use of electrophoresis techniques to demonstrate the results of all the samples. This is because, despite being a kinetic technique, quantitative PCR is usually evaluated at a distinct end point. The technique therefore usually provides more rapid results and/or uses fewer reactants than ...
Multiplex-PCR consists of multiple primer sets within a single PCR mixture to produce amplicons of varying sizes that are specific to different DNA sequences. By targeting multiple sequences at once, additional information may be gained from a single test run that otherwise would require several times the reagents and more time to perform.
Chip-based Digital PCR (dPCR) is also a method of dPCR in which the reaction mix (also when used in qPCR) is divided into ~10,000 to ~45,000 partitions on a chip, then amplified using an endpoint PCR thermocycling machine, and is read using a high-powered camera reader with fluorescence filter (HEX, FAM, Cy5, Cy5.5 and Texas Red) for all ...
Several DNA polymerases have been described with distinct properties that define their specific utilisation in a PCR, in real-time PCR or in an isothermal amplification. Being DNA polymerases, the thermostable DNA polymerases all have a 5'→3' polymerase activity, and either a 5'→3' or a 3'→5' exonuclease activity.
The PCR method is extremely sensitive, requiring only a few DNA molecules in a single reaction for amplification across several orders of magnitude. Therefore, adequate measures to avoid contamination from any DNA present in the lab environment ( bacteria , viruses , or human sources) are required.
The quantification of mRNA using RT-PCR can be achieved as either a one-step or a two-step reaction. The difference between the two approaches lies in the number of tubes used when performing the procedure. The two-step reaction requires that the reverse transcriptase reaction and PCR amplification be performed in separate tubes.
An extension of the 'colony-PCR' method (above), is the use of vector primers. Target DNA fragments (or cDNA) are first inserted into a cloning vector, and a single set of primers are designed for the areas of the vector flanking the insertion site. Amplification occurs for whatever DNA has been inserted. [4]