enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transitive closure - Wikipedia

    en.wikipedia.org/wiki/Transitive_closure

    The transitive closure of the adjacency relation of a directed acyclic graph (DAG) is the reachability relation of the DAG and a strict partial order. A cluster graph, the transitive closure of an undirected graph. The transitive closure of an undirected graph produces a cluster graph, a disjoint union of cliques.

  3. Directed acyclic graph - Wikipedia

    en.wikipedia.org/wiki/Directed_acyclic_graph

    The transitive closure of a DAG is the graph with the most edges that has the same reachability relation as the DAG. It has an edge u → v for every pair of vertices ( u , v ) in the reachability relation ≤ of the DAG, and may therefore be thought of as a direct translation of the reachability relation ≤ into graph-theoretic terms.

  4. Reachability - Wikipedia

    en.wikipedia.org/wiki/Reachability

    The Floyd–Warshall algorithm [5] can be used to compute the transitive closure of any directed graph, which gives rise to the reachability relation as in the definition, above. The algorithm requires (| |) time and (| |) space in the worst case. This algorithm is not solely interested in reachability as it also computes the shortest path ...

  5. Weak component - Wikipedia

    en.wikipedia.org/wiki/Weak_component

    By definition, . This is an asymmetric relation (two elements can only be related in one direction, not the other) and it inherits the property of being a transitive relation from the transitivity of reachability. Therefore, it defines a total ordering on the weak components.

  6. Acyclic orientation - Wikipedia

    en.wikipedia.org/wiki/Acyclic_orientation

    A transitive orientation of a graph is an acyclic orientation that equals its own transitive closure. Not every graph has a transitive orientation; the graphs that do are the comparability graphs. [8] Complete graphs are special cases of comparability graphs, and transitive tournaments are special cases of transitive orientations.

  7. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    The transitive extension of R 1 would be denoted by R 2, and continuing in this way, in general, the transitive extension of R i would be R i + 1. The transitive closure of R, denoted by R* or R ∞ is the set union of R, R 1, R 2, ... . [8] The transitive closure of a relation is a transitive relation. [8]

  8. Syntactic methods - Wikipedia

    en.wikipedia.org/wiki/Syntactic_methods

    while looking at the transitive closure of a system (all nodes downstream from a node), a node in its own transitive closure indicates a circularity; while looking at the transitive closure of a system, subsumption between pairs of rows indicates redundancy; conflicts are somewhat more difficult as they become more semantic than syntactic.

  9. Bisimulation - Wikipedia

    en.wikipedia.org/wiki/Bisimulation

    Since it is the union of all bisimulations, it is the unique largest bisimulation. Bisimulations are also closed under reflexive, symmetric, and transitive closure; therefore, the largest bisimulation must be reflexive, symmetric, and transitive. From this follows that the largest bisimulation—bisimilarity—is an equivalence relation. [2]