Search results
Results from the WOW.Com Content Network
The transitive closure of the adjacency relation of a directed acyclic graph (DAG) is the reachability relation of the DAG and a strict partial order. A cluster graph, the transitive closure of an undirected graph. The transitive closure of an undirected graph produces a cluster graph, a disjoint union of cliques.
The transitive closure of a DAG is the graph with the most edges that has the same reachability relation as the DAG. It has an edge u → v for every pair of vertices ( u , v ) in the reachability relation ≤ of the DAG, and may therefore be thought of as a direct translation of the reachability relation ≤ into graph-theoretic terms.
The Floyd–Warshall algorithm [5] can be used to compute the transitive closure of any directed graph, which gives rise to the reachability relation as in the definition, above. The algorithm requires (| |) time and (| |) space in the worst case. This algorithm is not solely interested in reachability as it also computes the shortest path ...
By definition, . This is an asymmetric relation (two elements can only be related in one direction, not the other) and it inherits the property of being a transitive relation from the transitivity of reachability. Therefore, it defines a total ordering on the weak components.
A transitive orientation of a graph is an acyclic orientation that equals its own transitive closure. Not every graph has a transitive orientation; the graphs that do are the comparability graphs. [8] Complete graphs are special cases of comparability graphs, and transitive tournaments are special cases of transitive orientations.
The transitive extension of R 1 would be denoted by R 2, and continuing in this way, in general, the transitive extension of R i would be R i + 1. The transitive closure of R, denoted by R* or R ∞ is the set union of R, R 1, R 2, ... . [8] The transitive closure of a relation is a transitive relation. [8]
while looking at the transitive closure of a system (all nodes downstream from a node), a node in its own transitive closure indicates a circularity; while looking at the transitive closure of a system, subsumption between pairs of rows indicates redundancy; conflicts are somewhat more difficult as they become more semantic than syntactic.
Since it is the union of all bisimulations, it is the unique largest bisimulation. Bisimulations are also closed under reflexive, symmetric, and transitive closure; therefore, the largest bisimulation must be reflexive, symmetric, and transitive. From this follows that the largest bisimulation—bisimilarity—is an equivalence relation. [2]