enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  3. Likelihood principle - Wikipedia

    en.wikipedia.org/wiki/Likelihood_principle

    Combining the likelihood principle with the law of likelihood yields the consequence that the parameter value which maximizes the likelihood function is the value which is most strongly supported by the evidence. This is the basis for the widely used method of maximum likelihood.

  4. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. [1]

  5. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    For maximum likelihood estimation, the existence of a global maximum of the likelihood function is of the utmost importance. By the extreme value theorem , it suffices that the likelihood function is continuous on a compact parameter space for the maximum likelihood estimator to exist. [ 7 ]

  6. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8] In many applications, such M-estimators can be thought of as estimating characteristics of the population.

  7. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was emphasized and explored by the statistician Sir Ronald Fisher (following some initial results by Francis Ysidro Edgeworth). The Fisher information matrix is used to calculate the covariance matrices associated with maximum-likelihood estimates.

  8. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    For practical problems with finite samples, other estimators may be preferable. Asymptotic theory suggests techniques that often improve the performance of bootstrapped estimators; the bootstrapping of a maximum-likelihood estimator may often be improved using transformations related to pivotal quantities. [40]

  9. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    The Baum–Welch algorithm uses the well known EM algorithm to find the maximum likelihood estimate of the parameters of a hidden Markov model given a set of observed feature vectors. Let X t {\displaystyle X_{t}} be a discrete hidden random variable with N {\displaystyle N} possible values (i.e.