enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  3. Likelihood principle - Wikipedia

    en.wikipedia.org/wiki/Likelihood_principle

    Combining the likelihood principle with the law of likelihood yields the consequence that the parameter value which maximizes the likelihood function is the value which is most strongly supported by the evidence. This is the basis for the widely used method of maximum likelihood.

  4. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    For maximum likelihood estimation, the existence of a global maximum of the likelihood function is of the utmost importance. By the extreme value theorem , it suffices that the likelihood function is continuous on a compact parameter space for the maximum likelihood estimator to exist. [ 7 ]

  5. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. [1]

  6. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8] In many applications, such M-estimators can be thought of as estimating characteristics of the population.

  7. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was emphasized and explored by the statistician Sir Ronald Fisher (following some initial results by Francis Ysidro Edgeworth). The Fisher information matrix is used to calculate the covariance matrices associated with maximum-likelihood estimates.

  8. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    For example: If the null model has 1 parameter and a log-likelihood of −8024 and the alternative model has 3 parameters and a log-likelihood of −8012, then the probability of this difference is that of chi-squared value of (()) = with = degrees of freedom, and is equal to .

  9. German tank problem - Wikipedia

    en.wikipedia.org/wiki/German_tank_problem

    The maximum likelihood estimate for the total number of tanks is N 0 = m, clearly a biased estimate since the true number can be more than this, potentially many more, but cannot be fewer. The marginal likelihood (i.e. marginalized over all models) is infinite , being a tail of the harmonic series .