Search results
Results from the WOW.Com Content Network
For such a double limit to exist, this definition requires the value of f approaches L along every possible path approaching (p, q), excluding the two lines x = p and y = q. As a result, the multiple limit is a weaker notion than the ordinary limit: if the ordinary limit exists and equals L, then the multiple limit exists and also equals L. The ...
Weaker than boundedness is local boundedness.A family of bounded functions may be uniformly bounded.. A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets ().
The limit lemma states that a set of natural numbers is limit computable if and only if the set is computable from ′ (the Turing jump of the empty set). The relativized limit lemma states that a set is limit computable in if and only if it is computable from ′. Moreover, the limit lemma (and its relativization) hold uniformly.
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
Python 3.15 will "Make UTF-8 mode default", [70] the mode exists in all current Python versions, but currently needs to be opted into. UTF-8 is already used, by default, on Windows (and elsewhere), for most things, but e.g. to open files it's not and enabling also makes code fully cross-platform, i.e. use UTF-8 for everything on all platforms.
In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...
For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we have f(x ∗) > f(x). Note that a point is a strict global maximum point if and only if ...
Limits can be difficult to compute. There exist limit expressions whose modulus of convergence is undecidable. In recursion theory, the limit lemma proves that it is possible to encode undecidable problems using limits. [14] There are several theorems or tests that indicate whether the limit exists. These are known as convergence tests.