Search results
Results from the WOW.Com Content Network
Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10-23 J K-1. The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).
The Stefan–Boltzmann constant, σ, is derived from other known physical constants: = where k is the Boltzmann constant, the h is the Planck constant, and c is the speed of light in vacuum. [ 19 ] [ 4 ] : 388
These include the Boltzmann constant, which gives the correspondence of the dimension temperature to the dimension of energy per degree of freedom, and the Avogadro constant, which gives the correspondence of the dimension of amount of substance with the dimension of count of entities (the latter formally regarded in the SI as being dimensionless).
Using simple algebra on equations , , and yields the result: = or =, where stands for the Boltzmann constant. Another equivalent result, using the fact that =, where n is the number of moles in the gas and R is the universal gas constant, is: =, which is known as the ideal gas law.
where is the Boltzmann constant (also written as simply ) and equal to 1.380649 × 10 −23 J/K, and is the natural logarithm function (or log base e, as in the image above). In short, the Boltzmann formula shows the relationship between entropy and the number of ways the atoms or molecules of a certain kind of thermodynamic system can be arranged.
Boltzmann's equation = is the realization that the entropy is proportional to with the constant of proportionality being the Boltzmann constant. Using the ideal gas equation of state ( PV = NkT ), It follows immediately that β = 1 / k T {\displaystyle \beta =1/kT} and α = − μ / k T {\displaystyle \alpha =-\mu /kT} so that the ...
The behavior of a quantum Boltzmann gas is the same as that of a classical ideal gas except for the specification of these constants. The results of the quantum Boltzmann gas are used in a number of cases including the Sackur–Tetrode equation for the entropy of an ideal gas and the Saha ionization equation for a weakly ionized plasma.
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...