Search results
Results from the WOW.Com Content Network
The interactions between the fluid phase and solids phase is modeled by use of Newton's third law. The direct incorporation of CFD into DEM to study the gas fluidization process so far has been attempted by Tsuji et al. [ 1 ] [ 2 ] and most recently by Hoomans et al., [ 3 ] Deb et al. [ 4 ] and Peng et al. [ 5 ] A recent overview over fields of ...
Most models use meshes which are either structured (Cartesian or curvilinear grids) or unstructured (triangular, tetrahedral, etc.). Gerris is quite different on this respect: it implements a deal between structured and unstructured meshes by using a tree data structure, [a] allowing to refine locally (and dynamically) the (finite-volume) description of the pressure and velocity fields.
Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation. Below is a structured list of topics in fluid dynamics.
The complexity mainly arises due to the presence of a magnetic field and its coupling with the fluid. One of the important issues is to numerically maintain the ∇ ⋅ B = 0 {\displaystyle \nabla \cdot {\mathbf {B} }=0} (conservation of magnetic flux ) condition, from Maxwell's equations , to avoid the presence of unrealistic effects, namely ...
Hamiltonian fluid mechanics is the application of Hamiltonian methods to fluid mechanics. Note that this formalism only applies to non dissipative fluids. Irrotational barotropic flow
Schematic of D2Q9 lattice vectors for 2D Lattice Boltzmann. Unlike CFD methods that solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice.
A direct numerical simulation (DNS) [1] [2] is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the whole range of spatial and temporal scales of the turbulence must be resolved.
In computational fluid dynamics (CFD), the SIMPLE algorithm is a widely used numerical procedure to solve the Navier–Stokes equations. SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early ...