enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    For example: 3 6; 3 6; 3 4.6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling. Broken down, 3 6 ; 3 6 (both of different transitivity class), or (3 6 ) 2 , tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided ...

  3. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  4. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Regular tetrahedra alone do not tessellate (fill space), but if alternated with regular octahedra in the ratio of two tetrahedra to one octahedron, they form the alternated cubic honeycomb, which is a tessellation. Some tetrahedra that are not regular, including the Schläfli orthoscheme and the Hill tetrahedron, can tessellate.

  5. Triangular tiling - Wikipedia

    en.wikipedia.org/wiki/Triangular_tiling

    In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees.

  6. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.

  7. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The polytopes of rank 2 (2-polytopes) are called polygons.Regular polygons are equilateral and cyclic.A p-gonal regular polygon is represented by Schläfli symbol {p}.. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular.

  8. Aperiodic set of prototiles - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_set_of_prototiles

    As early as AD 325, Pappus of Alexandria knew that only 3 types of regular polygons (the square, equilateral triangle, and hexagon) can fit perfectly together in repeating tessellations on a Euclidean plane. Within that plane, every triangle, irrespective of regularity, will tessellate. In contrast, regular pentagons do not tessellate.

  9. List of tessellations - Wikipedia

    en.wikipedia.org/wiki/List_of_tessellations

    This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed