Search results
Results from the WOW.Com Content Network
The peak is "well-sampled", so that less than 10% of the area or volume under the peak (area if a 1D Gaussian, volume if a 2D Gaussian) lies outside the measurement region. The width of the peak is much larger than the distance between sample locations (i.e. the detector pixels must be at least 5 times smaller than the Gaussian FWHM).
The equidensity contours of a non-singular multivariate normal distribution are ellipsoids (i.e. affine transformations of hyperspheres) centered at the mean. [28] Hence the multivariate normal distribution is an example of the class of elliptical distributions.
Visualisation of the Box–Muller transform — the coloured points in the unit square (u 1, u 2), drawn as circles, are mapped to a 2D Gaussian (z 0, z 1), drawn as crosses. The plots at the margins are the probability distribution functions of z0 and z1. z0 and z1 are unbounded; they appear to be in [−2.5, 2.5] due to the choice of the ...
All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...
One application of multidimensional convolution that is used within signal and image processing is Gaussian convolution. This refers to convolving an input signal with the Gaussian distribution function. 2D Gaussian Visualization where = = and = =
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...