enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectationmaximization...

    The Expectation Maximization Algorithm: A short tutorial, A self-contained derivation of the EM Algorithm by Sean Borman. The EM Algorithm, by Xiaojin Zhu. EM algorithm and variants: an informal tutorial by Alexis Roche. A concise and very clear description of EM and many interesting variants.

  3. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  4. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  5. List of text mining methods - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_methods

    Divisive Clustering: Top-down approach. Large clusters are split into smaller clusters. [3] Density-based Clustering: A structure is determined by the density of data points. [4] DBSCAN; Distribution-based Clustering: Clusters are formed based on mathematical methods from data. [1] Expectation-maximization algorithm; Collocation; Stemming Algorithm

  6. ELKI - Wikipedia

    en.wikipedia.org/wiki/ELKI

    When developing new algorithms or index structures, the existing components can be easily reused, and the type safety of Java detects many programming errors at compile time. ELKI is a free tool for analyzing data, mainly focusing on finding patterns and unusual data points without needing labels.

  7. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Model-based clustering was first invented in 1950 by Paul Lazarsfeld for clustering multivariate discrete data, in the form of the latent class model. [41] In 1959, Lazarsfeld gave a lecture on latent structure analysis at the University of California-Berkeley, where John H. Wolfe was an M.A. student. This led Wolfe to think about how to do the ...

  8. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    This training algorithm is an instance of the more general expectationmaximization algorithm (EM): the prediction step inside the loop is the E-step of EM, while the re-training of naive Bayes is the M-step.

  9. Mean shift - Wikipedia

    en.wikipedia.org/wiki/Mean_shift

    Also, the convergence of the algorithm in higher dimensions with a finite number of the stationary (or isolated) points has been proved. [5] [7] However, sufficient conditions for a general kernel function to have finite stationary (or isolated) points have not been provided. Gaussian Mean-Shift is an Expectationmaximization algorithm. [8]