Search results
Results from the WOW.Com Content Network
A simple cubic crystal has only one lattice constant, the distance between atoms, but in general lattices in three dimensions have six lattice constants: the lengths a, b, and c of the three cell edges meeting at a vertex, and the angles α, β, and γ between those edges. The crystal lattice parameters a, b, and c have the
An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics. However, digital physics considers nature fundamentally discrete at the Planck scale, which imposes upper limit to the density of information , aka Holographic principle .
In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice. The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice.
The lengths of principal axes/edges, of unit cell and angles between them are lattice constants, also called lattice parameters or cell parameters. The symmetry properties of crystal are described by the concept of space groups. [1] All possible symmetric arrangements of particles in three-dimensional space may be described by 230 space groups.
One can use the lattice to represent the real atomic crystal. In this case the lattice spacing is a real physical value, and not an artifact of the calculation which has to be removed (a UV regulator), and a quantum field theory can be formulated and solved on the physical lattice.
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics , and include the prevailing theories of elementary particles : quantum electrodynamics , quantum chromodynamics (QCD) and particle physics' Standard Model .
Here, a A (1-x) B x is the lattice parameter of the solid solution, a A and a B are the lattice parameters of the pure constituents, and x is the molar fraction of B in the solid solution. Vegard's law is seldom perfectly obeyed; often deviations from the linear behavior are observed. A detailed study of such deviations was conducted by King. [3]
In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. [1] There is no scientific consensus on why, for example, the weak force is 10 24 times stronger than gravity .