Search results
Results from the WOW.Com Content Network
The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows through a constricted section (or choke) of a pipe. The Venturi effect is named after its discoverer, the 18th-century Italian physicist Giovanni Battista Venturi .
Choked flow is a fluid dynamic condition associated with the Venturi effect. When a flowing fluid at a given pressure and temperature passes through a constriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe ) into a lower pressure environment the fluid velocity increases.
For a horizontal device, the continuity equation shows that for an incompressible fluid, the reduction in diameter will cause an increase in the fluid flow speed. Subsequently, Bernoulli's principle then shows that there must be a decrease in the pressure in the reduced diameter region. This phenomenon is known as the Venturi effect.
A vacuum ejector, or simply ejector is a type of vacuum pump, which produces vacuum by means of the Venturi effect.. In an ejector, a working fluid (liquid or gaseous) flows through a jet nozzle into a tube that first narrows and then expands in cross-sectional area.
Diagram of a de Laval nozzle, showing approximate flow velocity (v), together with the effect on temperature (T) and pressure (p) A de Laval nozzle (or convergent-divergent nozzle , CD nozzle or con-di nozzle ) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence.
When the air flows through the tube, there is a lower pressure in narrower tube section and this value is independent from the end from which the air is introduced. In the area where the pipe diameter is smaller, the air flow in fact has greater speed, which results in a lower pressure in accordance with Bernoulli's equation.
In hydrology, a Venturi flume is a device used for measuring the rate of flow of a liquid in situations with large flow rates, such as a river. [1] It is based on the Venturi effect, for which it is named. [2] It was first developed by V.M. Cone in Fort Collins, Colorado. [3] The Venturi flume consists of a flume with a constricted section in ...
As an example calculation using the above equation, assume that the propellant combustion gases are: at an absolute pressure entering the nozzle of p = 7.0 MPa and exit the rocket exhaust at an absolute pressure of p e = 0.1 MPa; at an absolute temperature of T = 3500 K; with an isentropic expansion factor of γ = 1.22 and a molar mass of M ...