Search results
Results from the WOW.Com Content Network
The negative slope of the indifference curve implies that the marginal rate of substitution is always positive; Complete, such that all points on an indifference curve are ranked equally preferred and ranked either more or less preferred than every other point not on the curve. So, with (2), no two curves can intersect (otherwise non-satiation ...
The indifference curves are L-shaped and their corners are determined by the weights. E.g., for the function min ( x 1 / 2 , x 2 / 3 ) {\displaystyle \min(x_{1}/2,x_{2}/3)} , the corners of the indifferent curves are at ( 2 t , 3 t ) {\displaystyle (2t,3t)} where t ∈ [ 0 , ∞ ) {\displaystyle t\in [0,\infty )} .
These functions are commonly used as examples in consumer theory. The functions are ordinal utility functions, which means that their properties are invariant under positive monotone transformation. For example, the Cobb–Douglas function could also be written as: + . Such functions only become interesting when there are two or more ...
Whether indifference curves are primitive or derivable from utility functions; and; Whether indifference curves are convex. Assumptions are also made of a more technical nature, e.g. non-reversibility, saturation, etc. The pursuit of rigour is not always conducive to intelligibility. In this article indifference curves will be treated as primitive.
A set of convex-shaped indifference curves displays convex preferences: Given a convex indifference curve containing the set of all bundles (of two or more goods) that are all viewed as equally desired, the set of all goods bundles that are viewed as being at least as desired as those on the indifference curve is a convex set.
Price-consumption curves are constructed by taking the intersection points between a series of indifference curves and their corresponding budget lines as the price of one of the two goods changes. [1] Price-consumption curves are used to connect concepts of utility, indifference curves, and budget lines to supply-demand models. [1]
Each demand curve (demand as a function of price) is a step function: the consumer wants to buy zero units of a good whose utility/price ratio is below the maximum, and wants to buy as many units as possible of a good whose utility/price ratio is maximum. The consumer regards the goods as perfect substitute goods.
Shephard's lemma is a major result in microeconomics having applications in the theory of the firm and in consumer choice. [1] The lemma states that if indifference curves of the expenditure or cost function are convex, then the cost minimizing point of a given good with price is unique.