enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    It can be extended to infinite-dimensional vector spaces as the L 2 norm or L 2 distance. [25] The Euclidean distance gives Euclidean space the structure of a topological space, the Euclidean topology, with the open balls (subsets of points at less than a given distance from a given point) as its neighborhoods. [26]

  3. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  4. Closest pair of points problem - Wikipedia

    en.wikipedia.org/wiki/Closest_pair_of_points_problem

    The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...

  5. Lloyd's algorithm - Wikipedia

    en.wikipedia.org/wiki/Lloyd's_algorithm

    Lloyd's algorithm is usually used in a Euclidean space. The Euclidean distance plays two roles in the algorithm: it is used to define the Voronoi cells, but it also corresponds to the choice of the centroid as the representative point of each cell, since the centroid is the point that minimizes the average squared Euclidean distance to the ...

  6. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.

  7. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    Then the Euclidean distance over the end-points of any two vectors is a proper metric which gives the same ordering as the cosine distance (a monotonic transformation of Euclidean distance; see below) for any comparison of vectors, and furthermore avoids the potentially expensive trigonometric operations required to yield a proper metric.

  8. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    In Euclidean space, the distance from a point to a plane is the distance between a given point and its orthogonal projection on the plane, ...

  9. Time Warp Edit Distance - Wikipedia

    en.wikipedia.org/wiki/Time_Warp_Edit_Distance

    In comparison to other distance measures, (e.g. DTW (dynamic time warping) or LCS (longest common subsequence problem)), TWED is a metric. Its computational time complexity is O ( n 2 ) {\displaystyle O(n^{2})} , but can be drastically reduced in some specific situations by using a corridor to reduce the search space.