enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    The Burt table is the symmetric matrix of all two-way cross-tabulations between the categorical variables, and has an analogy to the covariance matrix of continuous variables. Analyzing the Burt table is a more natural generalization of simple correspondence analysis , and individuals or the means of groups of individuals can be added as ...

  3. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    It provides a gradient boosting framework which, among other features, attempts to solve for categorical features using a permutation-driven alternative to the classical algorithm. [7] It works on Linux , Windows , macOS , and is available in Python , [ 8 ] R , [ 9 ] and models built using CatBoost can be used for predictions in C++ , Java ...

  4. OCaml - Wikipedia

    en.wikipedia.org/wiki/OCaml

    A Church numeral n is a higher-order function that accepts a function f and a value x and applies f to x exactly n times. To convert a Church numeral from a functional value to a string, we pass it a function that prepends the string "S" to its input and the constant string "0".

  5. DisCoCat - Wikipedia

    en.wikipedia.org/wiki/DisCoCat

    There are multiple definitions of DisCoCat in the literature, depending on the choice made for the compositional aspect of the model. The common denominator between all the existent versions, however, always involves a categorical definition of DisCoCat as a structure-preserving functor from a category of grammar to a category of semantics, which usually encodes the distributional hypothesis.

  6. List of analyses of categorical data - Wikipedia

    en.wikipedia.org/wiki/List_of_analyses_of...

    This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables.

  7. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression .

  8. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In feature engineering, two types of features are commonly used: numerical and categorical. Numerical features are continuous values that can be measured on a scale. Examples of numerical features include age, height, weight, and income. Numerical features can be used in machine learning algorithms directly. [citation needed]

  9. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    This type of score function is known as a linear predictor function and has the following general form: ⁡ (,) =, where X i is the feature vector for instance i, β k is the vector of weights corresponding to category k, and score(X i, k) is the score associated with assigning instance i to category k.