Search results
Results from the WOW.Com Content Network
The key reaction is the reduction of oxygen: O 2 + 4 e − + 2 H 2 O → 4 OH −. Because it forms hydroxide ions, this process is strongly affected by the presence of acid. Likewise, the corrosion of most metals by oxygen is accelerated at low pH. Providing the electrons for the above reaction is the oxidation of iron that may be described as ...
More common "base" metals can only be protected by more temporary means. Some metals have naturally slow reaction kinetics, even though their corrosion is thermodynamically favorable. These include such metals as zinc, magnesium, and cadmium. While corrosion of these metals is continuous and ongoing, it happens at an acceptably slow rate.
In other cases, such as mixed metals in piping (for example, copper, cast iron and other cast metals), galvanic corrosion will contribute to accelerated corrosion of parts of the system. Corrosion inhibitors such as sodium nitrite or sodium molybdate can be injected into these systems to reduce the galvanic potential. However, the application ...
The galvanic series (or electropotential series) determines the nobility of metals and semi-metals. When two metals are submerged in an electrolyte, while also electrically connected by some external conductor, the less noble (base) will experience galvanic corrosion. The rate of corrosion is determined by the electrolyte, the difference in ...
Under anoxic conditions, the mechanism for corrosion requires a substitute for oxygen as the oxidizing agent in the redox reaction. [1] For abiotic anaerobic corrosion, that substitute is the hydrogen ion produced in the dissociation of water and the proceeding reduction of the hydrogen ions into diatomic hydrogen gas. [1]
Flow-accelerated corrosion (FAC), also known as flow-assisted corrosion, is a corrosion mechanism in which a normally protective oxide layer on a metal surface dissolves in a fast flowing water. The underlying metal corrodes to re-create the oxide, and thus the metal loss continues.
High temperature oxidation is generally occurs via the following chemical reaction between oxygen (O 2) and a metal M: [2]. nM + 1/2kO 2 = M n O k. According to Wagner's theory of oxidation, oxidation rate is controlled by partial ionic and electronic conductivities of oxides and their dependence on the chemical potential of the metal or oxygen in the oxide.
In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. . Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation